
管件通常外圆表面的车削可分为粗车、半精车、精车和精细车四个加工阶段。选择哪一个加工阶段作为外圆表面的终加工,需要根据车削各加工阶段所能达到的尺寸精度和表面粗糙度,结合零件表面的技术要求来确定。粗车粗车的加工精度一般可达1T12-1T1O,表面粗糙度可达Ra.5μm。一般用于迅速切去多余的金属,常采用较大的背吃车床量、较大的进给量和中低速车削。半精车半精车加工精度可达lTlO-1T9,表面粗糙度可达Ra6.3-3.2μm,用于磨削加工和精加工的预加工,或中等精度表面的终加工。精车精车加工精度可达1TS-1D,表面粗糙度可达Ral.6-0.8μm,用于较精度外圆的终加工或作为光整加工的预加工。精细车精细车加工精度可达到1T6以上。
表面粗糙度可达RaO.4μm左右。主要用于精度、小型且不宜磨削的有色金属零件的外圆加工,或大型普通外圆表面加工。精细车时应采用的切削速度、小的背吃车床量和进给量来进行加工。对于精度要求在1T6以上的铁碳合金材料零件,则采用其他方法加工(如磨削)。用作改善材料切削性能的热处理方法有正火和退火。一般认为硬度在HBS范围内的钢材,其切削加工性通常。例如,含碳量大于0.5%的碳钢或碳合金钢,其硬度过而难以加工,容易磨损车床,一般采用退火工艺来降低硬度;而含碳量小于0.3%的低碳钢或低碳合金钢,其硬度过低,切削时容易"粘车床”,使车床发热而磨损,而且工件的表面质量较差,一般采用正火工艺来提升硬度。用作改善切削性能的热处理工艺通常安排在原材加工之后、切削加工之前进行。
一般多采用金属铸型。,浇入铸型中的熔融金属随铸型速旋转,铸件壁厚度均匀。1)基本概念用易熔材料(如蜡料)制成模样,在模样上包覆若干层耐火涂料,制成型壳,熔出模样后经温焙烧,然后进行浇注的铸造方法称为熔模铸。造熔模铸造又称失蜡铸造。2))熔模铸造工艺过程用钢或铜合金制成,用来制造压型。压型(见图1-姓lb)是用于压制模样的型,一般用钢、铝合金等制成,小批量生产可用易熔合金、环氧树脂、石膏等制成。熔模是可以在热水或蒸汽中熔化的模样。用蜡基材料(常用50%石蜡和50%硬脂酸)制成的熔模称为蜡模。将液态或糊状的易熔模料压入压型制成单个蜡模,然后将若干个单个蜡模黏合在蜡制的浇注系统上,形成蜡模组(型壳的制作工艺是:将蜡模组浸入以水玻璃与石英粉配成的熔模涂料中。
钢材的尺寸变化均在标准规定允许范围之内,对钢材的尺寸精度等X没有影响。管件冷拉过程中,由于塑性变形而使金属晶粒产生滑移、扭曲和破碎,从而在金属内部产生应力。在应力作用下钢材的硬度升,塑性下降出现加工硬化现象,以致不能继续进行变形。为此,必须进行再结晶退火,消除硬化现象,恢复塑性。再结品退火温度,主要取决于金属的再结晶温度。而再结晶温度又随塑性变形程度、化学成分、加热速度、原始组织等因素而变化。对于冷拉轴承钢而言,再结晶温度主要由变形程度和感应加热升温速度两项因素所决定。GCr15冷拉钢材再结晶温度与变形程度的关系表7-40给出了变形程度与再结品温度的关系。随变形程度(压缩率)的增大,开始再结晶温度降低.而完成再结晶温度保持不变。
而非焊接结构对含碳量可降低要求。工作条件:钢材处于低温时容易冷脆,因此在低温条件下工作的结构,尤其是焊接结构,应选用具有良好低温脆断性能的钢。此外,露天结构的钢材容易产生时效,有害介质作用的钢材容易腐蚀、疲劳和断裂,也应加以区别地选择不同材质。钢材厚度:薄钢材棍轧次数多,轧制的压缩比大,厚度大的钢材压缩比小,所以厚度大的钢材不但强度较小,而且塑性、冲击韧性和焊接性能也较差。因此,厚度大的焊接结构应采用材质较好的钢材。对钢材质量的要求,一般地,承重结构的钢材应保证抗拉强度、屈服好处、伸长率和硫、磷的含量,对焊接结构尚应保证碳的含量(由于Q235-A钢的碳含量不作为交货条件,故一般不用于焊接结构)。
切削加工时,由机床、夹具、车床和双排螺栓压紧管夹组成的机械加工工艺系统,在切削力、夹紧力以及重力的作用下,将产生相应的变形。这种变形将破坏车床和双排螺栓压紧管夹在静态下调整好的相互位置,并会使切削成形运动所需要的正确几何关系发生变化,而造成加工误差。例如在车削细长轴时,双排螺栓压紧管夹在切削力的作用下会发生变形,使加工出的轴出现中间粗两头细的情况;在内圆磨床上采用径向进给磨孔时,由于内圆磨头主轴弯曲变形,磨出的孔会出现锥度的圆柱度误差。从影响加工精度的角度出发,工艺系统的刚度可定义为在加工误差敏感方向上工艺系统所受外力与变形量之比。